Skip to main content

Feed Type: orchestrator_project.llmfeed.json

Purpose

This feed type extends the standard project_dir feed to enable intelligent multi-agent orchestration. It provides structured context for orchestrators to:

  • Auto-assign specialized agents based on project requirements
  • Route context sections to appropriate agent expertise
  • Coordinate workflows between multiple agents
  • Maintain agent-specific knowledge and experiences
  • Enable seamless handoffs between human and AI collaboration

Think of it as a "smart project blueprint" that teaches orchestrators how to manage complex multi-agent development workflows.


Problem Statement

Traditional Project Context Limitations

Single-Agent Approach:

  • Context floods all agents with irrelevant information
  • No specialization routing or expertise matching
  • Manual agent assignment and coordination
  • Context switching overhead between different skill areas

Orchestrator-Aware Solution:

  • Intelligent agent selection based on task requirements
  • Context filtering by agent specialty and workflow role
  • Automated workflow coordination with collaboration points
  • Knowledge base routing to relevant agent expertise

Core Structure

Required Fields

{
"feed_type": "orchestrator_project",
"version": "1.0.0",
"metadata": {
"title": "string",
"description": "string",
"framework": "string",
"primary_domain": "string",
"orchestrator_compatible": true,
"multi_agent_ready": true,
"last_agent_sync": "ISO8601"
},

"orchestration": {
"agent_requirements": {
"agent_id": {
"specialty_match": "string",
"required_skills": ["array"],
"context_priority": "high|medium|low",
"workflow_role": "string"
}
},
"context_routing": {
"domain_area": {
"primary": "agent_id",
"context_focus": ["section_paths"],
"knowledge_base": ["expertise_areas"]
}
},
"agent_workflows": {
"workflow_name": {
"sequence": ["agent_order"],
"collaboration_points": ["interaction_descriptions"],
"deliverables": ["expected_outputs"]
}
}
},

"agent_sections": {
"agent_id": {
"last_updated": "ISO8601",
"context_focus": ["relevant_project_sections"],
"current_tasks": ["active_assignments"],
"knowledge_contributions": ["insights_added"],
"collaboration_notes": ["coordination_info"]
}
}
}

Complete Example: LLMCA.org Project

{
"feed_type": "orchestrator_project",
"version": "1.0.0",
"metadata": {
"title": "LLMCA.org - Trust Authority Architecture",
"description": "Multi-agent development of LLMFeed certification and verification system",
"version": "2025.1.1",
"framework": "Next.js 15.3.2",
"primary_domain": "llmca.org",
"orchestrator_compatible": true,
"multi_agent_ready": true,
"last_agent_sync": "2025-01-29T10:00:00Z",
"agent_ready": true,
"llm_intent": "Multi-agent project coordination and intelligent task routing"
},

"project_architecture": {
"tech_stack": {
"framework": "Next.js 15.3.2",
"language": "TypeScript (strict)",
"crypto": "@noble/ed25519, tweetnacl",
"ui_library": "Tailwind CSS + Radix UI",
"deployment": "Static export"
},
"layer_separation": {
"crypto_layer": {
"location": "lib/sign_verify/",
"purpose": "Ed25519 signature operations",
"key_modules": ["sign.ts", "verify.ts", "core.ts"]
},
"feed_layer": {
"location": "lib/feed/",
"purpose": "LLMFeed operations and validation",
"key_modules": ["verify.ts", "validation.ts", "canonicalizeFeed.ts"]
},
"api_layer": {
"location": "app/api/",
"purpose": "Clean API endpoints",
"key_routes": ["/verify", "/sign", "/prepare-delegated"]
},
"ui_layer": {
"location": "components/",
"purpose": "Reusable UI components",
"key_components": ["ExportToLLMButton.tsx", "FeedViewer.tsx"]
}
}
},

"orchestration": {
"agent_requirements": {
"llmca-expert": {
"specialty_match": "cryptography, ed25519, trust-systems, signature-verification",
"required_skills": [
"signature_generation",
"certificate_validation",
"trust_chain_analysis",
"cryptographic_protocols"
],
"context_priority": "high",
"workflow_role": "security_lead",
"expertise_domains": ["crypto_layer", "trust_architecture", "signature_flows"]
},

"frontend-expert": {
"specialty_match": "nextjs, react, typescript, tailwind, ui-components",
"required_skills": [
"component_architecture",
"ui_optimization",
"responsive_design",
"user_experience"
],
"context_priority": "medium",
"workflow_role": "interface_development",
"expertise_domains": ["ui_layer", "component_design", "user_flows"]
},

"api-expert": {
"specialty_match": "api-design, rest-endpoints, nextjs-routes, verification",
"required_skills": [
"endpoint_design",
"api_orchestration",
"request_validation",
"error_handling"
],
"context_priority": "high",
"workflow_role": "service_layer",
"expertise_domains": ["api_layer", "service_integration", "data_flows"]
}
},

"context_routing": {
"cryptographic_operations": {
"primary": "llmca-expert",
"context_focus": [
"project_architecture.layer_separation.crypto_layer",
"key_components.VerificationOrchestrator",
"api_endpoints./api/verify",
"api_endpoints./api/sign"
],
"knowledge_base": [
"ed25519_signature_standards",
"trust_chain_protocols",
"llmfeed_verification_patterns"
]
},

"user_interface": {
"primary": "frontend-expert",
"context_focus": [
"project_architecture.layer_separation.ui_layer",
"key_components.ExportToLLMButton",
"development_patterns.component_patterns",
"directory_structure.components"
],
"knowledge_base": [
"react_component_patterns",
"tailwind_optimization",
"accessibility_standards"
]
},

"api_services": {
"primary": "api-expert",
"context_focus": [
"project_architecture.layer_separation.api_layer",
"api_endpoints",
"integration_points",
"development_patterns.eslint_rules"
],
"knowledge_base": [
"nextjs_api_routes",
"rest_best_practices",
"verification_workflows"
]
}
},

"agent_workflows": {
"security_audit": {
"lead": "llmca-expert",
"sequence": ["llmca-expert", "api-expert"],
"collaboration_points": [
"Crypto layer security review",
"API endpoint vulnerability assessment",
"Trust chain validation testing"
],
"deliverables": [
"security_audit_report",
"vulnerability_assessment",
"compliance_checklist"
]
},

"feature_development": {
"sequence": ["api-expert", "frontend-expert", "llmca-expert"],
"collaboration_points": [
"API design and endpoint specification",
"UI component integration and user flows",
"Security validation and signature integration"
],
"deliverables": [
"api_specification",
"ui_components",
"security_integration"
]
},

"performance_optimization": {
"lead": "frontend-expert",
"sequence": ["frontend-expert", "api-expert", "llmca-expert"],
"collaboration_points": [
"Component rendering optimization",
"API response caching strategies",
"Signature verification performance"
],
"deliverables": [
"performance_report",
"optimization_recommendations",
"implementation_plan"
]
}
}
},

"agent_sections": {
"llmca-expert": {
"last_updated": "2025-01-29T09:30:00Z",
"context_focus": [
"cryptography",
"lib/sign_verify/",
"signature verification flows",
"trust chain architecture"
],
"current_tasks": [
"Optimize Ed25519 signature verification performance",
"Review trust chain validation logic",
"Implement certificate delegation support"
],
"knowledge_contributions": [
"Ed25519 performance benchmarks",
"Trust chain security patterns",
"Signature canonicalization improvements"
],
"collaboration_notes": [
"Working with api-expert on /api/verify endpoint optimization",
"Needs frontend-expert input on signature status UI display"
],
"expertise_level": "specialist",
"priority_areas": ["security", "crypto_protocols", "trust_systems"]
},

"frontend-expert": {
"last_updated": "2025-01-29T08:45:00Z",
"context_focus": [
"components/",
"UI/UX patterns",
"ExportToLLMButton variants",
"responsive design"
],
"current_tasks": [
"Refactor ExportToLLMButton for better reusability",
"Implement dark mode support across components",
"Optimize mobile responsiveness"
],
"knowledge_contributions": [
"Component architecture best practices",
"Tailwind utility patterns",
"Accessibility improvements"
],
"collaboration_notes": [
"Coordinating with api-expert on error handling UI",
"Need llmca-expert guidance on signature status indicators"
],
"expertise_level": "specialist",
"priority_areas": ["user_experience", "component_design", "performance"]
},

"api-expert": {
"last_updated": "2025-01-29T10:15:00Z",
"context_focus": [
"app/api/",
"endpoint design",
"request/response flows",
"error handling patterns"
],
"current_tasks": [
"Implement rate limiting for /api/verify endpoint",
"Add comprehensive error responses",
"Optimize API response caching"
],
"knowledge_contributions": [
"API orchestrator patterns",
"Error handling best practices",
"Performance optimization strategies"
],
"collaboration_notes": [
"Working with llmca-expert on signature verification integration",
"Coordinating with frontend-expert on API response UI handling"
],
"expertise_level": "specialist",
"priority_areas": ["api_design", "integration", "scalability"]
}
},

"orchestrator_guidance": {
"onboarding_flow": [
"1. Parse orchestrator_project feed to understand multi-agent architecture",
"2. Map agent requirements to available specialized agents",
"3. Route relevant context sections to appropriate agents based on expertise",
"4. Initialize agent knowledge bases with domain-specific focus areas",
"5. Setup collaboration workflows and handoff points"
],

"task_routing": {
"security_review": ["llmca-expert", "api-expert"],
"ui_enhancement": ["frontend-expert", "api-expert"],
"performance_optimization": ["frontend-expert", "api-expert", "llmca-expert"],
"new_feature": ["api-expert", "frontend-expert", "llmca-expert"],
"bug_fix": ["determine by affected layer/component"]
},

"collaboration_hints": [
"ExportToLLMButton changes require frontend-expert lead + api-expert integration",
"Signature verification changes need llmca-expert lead + api-expert implementation",
"Performance issues benefit from all-agent collaborative analysis",
"Security concerns always route through llmca-expert first"
],

"update_triggers": [
"Agent completes major task → update agent_sections",
"Architecture changes → sync orchestration.context_routing",
"New requirements → review agent_requirements",
"Performance issues → trigger optimization workflow"
]
},

"maintenance_automation": {
"auto_sync": {
"frequency": "after_agent_task_completion",
"triggers": [
"agent_task_completed",
"context_section_modified",
"workflow_milestone_reached"
],
"update_sections": [
"agent_sections.{agent_id}.last_updated",
"agent_sections.{agent_id}.current_tasks",
"agent_sections.{agent_id}.knowledge_contributions"
]
},

"health_monitoring": {
"agent_activity": "track last_updated timestamps",
"context_freshness": "validate context_focus relevance",
"workflow_progress": "monitor collaboration_points completion",
"knowledge_growth": "measure knowledge_contributions accumulation"
},

"intelligent_updates": {
"context_drift_detection": "identify when agent focus diverges from context_routing",
"workflow_optimization": "suggest sequence improvements based on completion patterns",
"agent_load_balancing": "redistribute tasks based on current_tasks capacity",
"knowledge_gap_identification": "detect missing expertise areas"
}
},

"agent_guidance": {
"pre_task_consultation": [
"1. Check if orchestrator_project feed exists in project root",
"2. Locate your agent_id in agent_sections for current context",
"3. Review context_focus areas relevant to your specialty",
"4. Check current_tasks for active assignments and priorities",
"5. Review collaboration_notes for coordination requirements"
],

"task_execution": [
"Focus on context sections listed in your context_focus",
"Prioritize work based on workflow_role and context_priority",
"Document knowledge_contributions as you learn",
"Update collaboration_notes for coordination with other agents"
],

"post_task_updates": [
"Update current_tasks to reflect completed work",
"Add knowledge_contributions gained during task",
"Note collaboration_notes for future coordination",
"Trigger orchestrator sync for knowledge sharing"
]
},

"trust": {
"signed_blocks": [
"metadata",
"orchestration",
"agent_sections",
"orchestrator_guidance"
],
"scope": "multi_agent_coordination",
"algorithm": "ed25519",
"public_key_hint": "https://llmca.org/.well-known/public.pem"
},

"signature": {
"value": "signature_hash_placeholder",
"created_at": "2025-01-29T10:00:00Z"
}
}

Agent Interaction Patterns

Pre-Task Agent Consultation

// Agent checks before starting work
async function consultProjectContext(projectName, agentId) {
const contextPath = `${projectPath}/project-context.llmfeed.json`

if (existsSync(contextPath)) {
const context = JSON.parse(readFileSync(contextPath))

if (context.feed_type === 'orchestrator_project') {
// Get agent-specific context
const agentSection = context.agent_sections[agentId]
const contextRouting = findAgentRouting(context, agentId)

return {
focus_areas: agentSection?.context_focus || [],
current_tasks: agentSection?.current_tasks || [],
collaboration_notes: agentSection?.collaboration_notes || [],
priority_level: contextRouting?.context_priority || 'medium'
}
}
}

return null // Fall back to standard project analysis
}

Orchestrator Auto-Assignment

// Orchestrator assigns agents based on requirements
async function autoAssignAgents(projectName) {
const context = await loadProjectContext(projectName)

if (context.feed_type === 'orchestrator_project') {
const assignments = []

for (const [agentId, requirements] of Object.entries(context.orchestration.agent_requirements)) {
const agent = await this.agentRegistry.getAgent(agentId)

if (agent && this.matchesRequirements(agent, requirements)) {
assignments.push({
agentId,
role: requirements.workflow_role,
priority: requirements.context_priority,
focus: context.orchestration.context_routing[requirements.workflow_role]?.context_focus
})
}
}

return assignments
}

return [] // Fall back to manual assignment
}

Orchestrator Maintenance Responsibilities

Automatic Updates

// Update agent sections after task completion
async function updateAgentSection(projectName, agentId, updates) {
const contextPath = `${projectPath}/project-context.llmfeed.json`
const context = JSON.parse(readFileSync(contextPath))

if (!context.agent_sections[agentId]) {
context.agent_sections[agentId] = {
last_updated: new Date().toISOString(),
context_focus: [],
current_tasks: [],
knowledge_contributions: [],
collaboration_notes: []
}
}

// Merge updates
Object.assign(context.agent_sections[agentId], {
...updates,
last_updated: new Date().toISOString()
})

// Update metadata
context.metadata.last_agent_sync = new Date().toISOString()

// Save back to project
writeFileSync(contextPath, JSON.stringify(context, null, 2))
}

Health Monitoring

// Monitor agent activity and context freshness
async function monitorProjectHealth(projectName) {
const context = await loadProjectContext(projectName)

const health = {
agent_activity: {},
stale_contexts: [],
workflow_bottlenecks: [],
knowledge_gaps: []
}

// Check agent activity
for (const [agentId, section] of Object.entries(context.agent_sections)) {
const lastUpdate = new Date(section.last_updated)
const daysSinceUpdate = (Date.now() - lastUpdate) / (24 * 60 * 60 * 1000)

health.agent_activity[agentId] = {
days_since_update: daysSinceUpdate,
active_tasks: section.current_tasks.length,
status: daysSinceUpdate > 7 ? 'stale' : 'active'
}
}

return health
}

Benefits & Use Cases

For Orchestrators

  • Intelligent agent selection based on project requirements
  • Automated context routing to relevant agent expertise
  • Workflow coordination with defined collaboration points
  • Knowledge management across multiple specialized agents
  • Health monitoring of agent activity and context freshness

For Agents

  • Pre-task context understanding before starting work
  • Focused expertise areas rather than full project overwhelm
  • Collaboration awareness of other agents and handoff points
  • Knowledge contribution tracking and sharing
  • Priority guidance based on workflow role and project phase

For Developers

  • Multi-agent project setup and coordination
  • Expertise specialization routing to appropriate skills
  • Workflow automation reducing manual agent coordination
  • Project continuity across different agent interactions
  • Knowledge preservation of agent insights and contributions

Implementation Patterns

Gradual Migration from project_dir

{
"feed_type": "orchestrator_project",
"project_architecture": {
// Existing project_dir content
},
"orchestration": {
// New orchestrator-specific sections
},
"agent_sections": {
// Initially empty, populated by orchestrator
}
}

Hybrid Compatibility

// Support both feed types
function loadProjectContext(projectName) {
const context = readProjectContextFile(projectName)

if (context.feed_type === 'orchestrator_project') {
return new OrchestratorProjectContext(context)
} else if (context.feed_type === 'project_dir') {
return new StandardProjectContext(context)
}

throw new Error('Unsupported project context format')
}

Future Enhancements

Advanced Features

  • Cross-project agent knowledge sharing and transfer
  • Dynamic workflow optimization based on performance patterns
  • Agent load balancing and capacity management
  • Automated conflict resolution between agent recommendations
  • Knowledge graph construction from agent contributions

Integration Opportunities

  • CI/CD pipeline integration for automated context updates
  • IDE plugins for agent context awareness during development
  • Performance analytics for agent effectiveness measurement
  • Team collaboration tools integration for human-agent workflows

This orchestrator_project feed type transforms traditional project documentation into an intelligent coordination system that enables seamless multi-agent collaboration while preserving the portability and accessibility benefits of the original project_dir approach.